Summer Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dcdisc65

Page: 1 / 3
Total 22 questions
Exam Code: Databricks-Machine-Learning-Associate                Update: Oct 16, 2025
Exam Name: Databricks Certified Machine Learning Associate Exam

Databricks Databricks Certified Machine Learning Associate Exam Databricks-Machine-Learning-Associate Exam Dumps: Updated Questions & Answers (October 2025)

Question # 1

A data scientist has been given an incomplete notebook from the data engineering team. The notebook uses a Spark DataFrame spark_df on which the data scientist needs to perform further feature engineering. Unfortunately, the data scientist has not yet learned the PySpark DataFrame API.

Which of the following blocks of code can the data scientist run to be able to use the pandas API on Spark?

A.

import pyspark.pandas as ps

df = ps.DataFrame(spark_df)

B.

import pyspark.pandas as ps

df = ps.to_pandas(spark_df)

C.

spark_df.to_pandas()

D.

import pandas as pd

df = pd.DataFrame(spark_df)

Question # 2

A machine learning engineer is using the following code block to scale the inference of a single-node model on a Spark DataFrame with one million records:

Assuming the default Spark configuration is in place, which of the following is a benefit of using anIterator?

A.

The data will be limited to a single executor preventing the model from being loaded multiple times

B.

The model will be limited to a single executor preventing the data from being distributed

C.

The model only needs to be loaded once per executor rather than once per batch during the inference process

D.

The data will be distributed across multiple executors during the inference process

Question # 3

A data scientist is using Spark ML to engineer features for an exploratory machine learning project.

They decide they want to standardize their features using the following code block:

Upon code review, a colleague expressed concern with the features being standardized prior to splitting the data into a training set and a test set.

Which of the following changes can the data scientist make to address the concern?

A.

Utilize the MinMaxScaler object to standardize the training data according to global minimum and maximum values

B.

Utilize the MinMaxScaler object to standardize the test data according to global minimum and maximum values

C.

Utilize a cross-validation process rather than a train-test split process to remove the need for standardizing data

D.

Utilize the Pipeline API to standardize the training data according to the test data's summary statistics

E.

Utilize the Pipeline API to standardize the test data according to the training data's summary statistics

Question # 4

A data scientist is attempting to tune a logistic regression model logistic using scikit-learn. They want to specify a search space for two hyperparameters and let the tuning process randomly select values for each evaluation.

They attempt to run the following code block, but it does not accomplish the desired task:

Which of the following changes can the data scientist make to accomplish the task?

A.

Replace the GridSearchCV operation with RandomizedSearchCV

B.

Replace the GridSearchCV operation with cross_validate

C.

Replace the GridSearchCV operation with ParameterGrid

D.

Replace the random_state=0 argument with random_state=1

E.

Replace the penalty= ['12', '11'] argument with penalty=uniform ('12', '11')

Question # 5

Which of the following machine learning algorithms typically uses bagging?

A.

Gradient boosted trees

B.

K-means

C.

Random forest

D.

Linear regression

E.

Decision tree

Question # 6

A data scientist is using the following code block to tune hyperparameters for a machine learning model:

Which change can they make the above code block to improve the likelihood of a more accurate model?

A.

Increase num_evals to 100

B.

Change fmin() to fmax()

C.

Change sparkTrials() to Trials()

D.

Change tpe.suggest to random.suggest

Question # 7

An organization is developing a feature repository and is electing to one-hot encode all categorical feature variables. A data scientist suggests that the categorical feature variables should not be one-hot encoded within the feature repository.

Which of the following explanations justifies this suggestion?

A.

One-hot encoding is a potentially problematic categorical variable strategy for some machine learning algorithms.

B.

One-hot encoding is dependent on the target variable’s values which differ for each apaplication.

C.

One-hot encoding is computationally intensive and should only be performed on small samples of training sets for individual machine learning problems.

D.

One-hot encoding is not a common strategy for representing categorical feature variables numerically.

Question # 8

A machine learning engineer is trying to scale a machine learning pipeline by distributing its single-node model tuning process. After broadcasting the entire training data onto each core, each core in the cluster can train one model at a time. Because the tuning process is still running slowly, the engineer wants to increase the level of parallelism from 4 cores to 8 cores to speed up the tuning process. Unfortunately, the total memory in the cluster cannot be increased.

In which of the following scenarios will increasing the level of parallelism from 4 to 8 speed up the tuning process?

A.

When the tuning process in randomized

B.

When the entire data can fit on each core

C.

When the model is unable to be parallelized

D.

When the data is particularly long in shape

E.

When the data is particularly wide in shape

Question # 9

A data scientist has been given an incomplete notebook from the data engineering team. The notebook uses a Spark DataFrame spark_df on which the data scientist needs to perform further feature engineering. Unfortunately, the data scientist has not yet learned the PySpark DataFrame API.

Which of the following blocks of code can the data scientist run to be able to use the pandas API on Spark?

A.

import pyspark.pandas as ps

df = ps.DataFrame(spark_df)

B.

import pyspark.pandas as ps

df = ps.to_pandas(spark_df)

C.

spark_df.to_sql()

D.

import pandas as pd

df = pd.DataFrame(spark_df)

E.

spark_df.to_pandas()

Question # 10

The implementation of linear regression in Spark ML first attempts to solve the linear regression problem using matrix decomposition, but this method does not scale well to large datasets with a large number of variables.

Which of the following approaches does Spark ML use to distribute the training of a linear regression model for large data?

A.

Logistic regression

B.

Singular value decomposition

C.

Iterative optimization

D.

Least-squares method

Page: 1 / 3
Total 22 questions

Most Popular Certification Exams

Payment

       

Contact us

dumpscollection live chat

Site Secure

mcafee secure

TESTED 16 Oct 2025